What Can Our Brains Do ?

Wei TangWei Tang, assistant professor of electrical and computer engineering at New Mexico State University, is taking a cue from nature to devise the next generation of integrated low-power, wearable micro-devices.

The human brain inspired his approach in the novel design of a system of state-of-the-art miniaturized sensors that can detect, transmit and reliably process valuable data.

Wireless sensors already enjoy widespread use in health care, surveillance, smart buildings, disaster mitigation and environmental monitoring. But the expectation of next-generation devices is that they be small enough to wear on clothing, a hat or eyeglasses.

Tang plans to use current sensor technology using a new design strategy to construct better circuits to build a bridge between the human body and the environment. The broad goal of his work is to extend our ability to sense the world and better respond to the environment and to develop medical devices that can be used for rehabilitation or to prevent and detect disease.

“The challenge of designing wearable devices is to make sensors that require very, very low power consumption and have a very, very small circuit area,” Tang said.

“My idea is to learn from nature how our brains and bodies work,” Tang said. “Our brain is a kind of a circuit. It has some big differences if you can compare it to a computer. Our brain has some big advantages. Our brain runs at very low power and is quite compact. A computer is constantly running at a very fast speed and the battery may last only one day. They are also too large.”

Computer code represents information as groups of 1s and 0s, or bits. The information has different weights making it a hierarchical, weighted system. The human brain transmits information through a series of neurons, all of which have different functions, but all of which carry the same weight, making a non-weighted system. The frequency with which neurons transmit information in the brain varies, so that the body can determine different types of information.

“Our brain is an asynchronous non-weighted machine and a computer is a synchronous weighted machine,” Tang said. “This is what I learned from a neuron science class,” he added. “I think we can borrow from this idea to build our next-generation circuit.”

Synchronous devices, such as computers, are constantly running code and communicating, even if there is no information to be sent. As a result, they waste a lot of energy. But if one thinks about humans having a conversation, they don’t need to have processes constantly running to synchronize words. Tang proposes to replace synchronous devices with devices that work more efficiently, like the human brain.

“I think we can replace current radio devices that use synchronous information to use asynchronous information – that is the first part. We developed a radio device with small circuits. We want to demonstrate that this radio can communicate to another radio using very low power consumption,” Tang said.

“The next part is to process the information. We created a very small integrated circuit, 3 millimeters by 3 millimeters. After testing this device, we want to put it on a hat with a small battery to extract EEG brain wave information. A patient or someone could wear it for a day or even up to a week. It would provide doctors with information to analyze.”

An EEG, or electroencephalogram, is a test that measures and records the electrical activity of the brain. Sensors are attached to a patient’s head and hooked by wires to a computer that records the brain’s electrical activity and diagnoses problems such as epilepsy.

Because the power consumption of Tang’s sensor device is so low, he is planning to devise some sort of energy-harvesting device, using energy from vibrations or solar energy. That way, the sensor would no longer require a battery and would become power independent, Tang’s ultimate goal.

The application of this technology is broad, indeed. Tang has collaborated with two researchers from NMSU’s Biology Department.

Associate Professor Timothy Wright is using a hummingbird feeder that uses Radio-Frequency Identification to give birds access to the nectar. Tang’s group designed a controller, a detection mechanism to alert the feeder when a bird is near and data logging. The feeder was constructed by the College of Engineering’s Manufacturing and Technology Engineering Center. Wright’s group conducted research with the feeder in Costa Rica last year. The study relates the cognitive abilities of the birds to their ability to defend their territories.

In another study, Professor Graciela Unguez has been working with Tang to use his technology to assist in her study of electric fish that are able to produce weak electric fields and use this ability to sense their environment, choose a mate and identify members of their own species.
Tang is developing a tiny device that can be placed on the fish to collect data about their behavior.

This study is important to the future of using sensors that can reliably transmit information through water, leading the way for devices that can be implanted in the human body or submersed in water, or built into concrete structures for measuring mechanical stress, for instance.

“There are applications everywhere: industry, environmental, security, biomedical,” Tang said. “Everywhere we see the need for the next-generation computer that is miniature.”

Posted in News, Uncategorized | Leave a comment

Amendment No. 3 to BS 7671:2008

Amendment 3 to BS 7671:2008 – IET Electrical Amendment 3 to BS 7671:2008 (IET Wiring Regulations 17th Edition) was published on 5 January 2015.

All users of the IET Wiring Regulations need to be aware of the coming changes in Amendment No. 3 to the 17th Edition (BS 7671:2008+A3:2015). Potentially life-saving changes are proposed making this a vital update. These changes are expected to include (but are not limited to) amendments in the following areas: Consumer units (to come into effect January 2016) Wiring in escape routes Changes to earth fault loop impedances for all protective devices Updated EIC and EICR forms Changes to definitions throughout the Regulations Amendment No. 3 publishes on 5 January 2015 and comes into effect on 1 July 2015. All new installations from this point must comply with Amendment No. 3 to BS 7671:2008.

The following two books include details Amendment 3 to BS 7671:2008 and are well worth purchasing.  Click the link below to buy from Amazon.


Posted in IET, Information, Safety | Leave a comment

Electric Safety – A Shocking Reminder Video

We found this video on YouTube, it will remind us all that electric can and does kill.  Please stay safe and think when cables are behind walls etc, its so easy for people to screw something to a wall.

Posted in Information, Safety | Tagged | Leave a comment

Fake IET Manuals

There was a warning back in November 2013 about the dangers of buying fake copy’s of the regulations.  Well yet again more fake copy’s have been found recently and are still been sold in the UK, it was reported on a recent episode of the BBC program “Fake Britain”.

Did you watch this or read the story ?



Posted in IET, Information, Safety | Leave a comment

What Devices In Our Home Use The Most Energy

We found this list on-line today and it advises you which uses more energy in standby mode, a computer or a phone charger etc etc.  There is some supprises in the list.  This of cause is based on UK energy use and is in UK pounds.

The green electricity company has compiled a list of the worst household offenders and the results may come as a surprise to many of you.

Annual energy usage while on standby:

Wireless Router (e.g. BT Hub) – £21.92

Printer (Laser) – £18.26

Set-top (Satellite) – £18.26

Amplifier – £12.18

Compact Hi-Fi – £12.18

iPad charger – £12.18

Nintendo Wii – £12.18

Set-top box (Freeview) – £7.31

Alarm Clock – £6.09

Microsoft Xbox 360 – £6.09

Modem – £6.09

Sony PlayStation 3 – £6.09

Air freshener plug-in – £4.87

CD player / Tuner – £4.87

Television (Plasma) – £4.87

Video Player – £4.87

Inkjet printer – £4.26

Desktop PC – £3.65

Nintendo DS – £3.65

Oven (Electric) – £3.65

Microwave – £3.04

Television (CRT & LCD) – £3.04

Mobile phone charger – £2.44

PC monitor (CRT) – £2.44

Electric toothbrush – £1.22

Childs night light – £0.73

Posted in Energy Saving, Information | 1 Comment

Cable Safety – Tying Cables Correctly

We have found this article on the internet which we are sure will be of interest to many people working in the electrical trade.  It explains whether adequate regulations exist for the securing of cables.

What are your thoughts on this ?

Posted in Information, Safety | Leave a comment

Part P Third Party Certification

New Part P third party certification schemes for electrical installation work in dwellings were introduced in England on 6th April 2014. The bodies that have been authorised to operate schemes are listed on the DCLG website at


If you want to know more about this scheme, what it is and how it works there is a great article on the IET website we suggest you read. Click here to read the full article.

Posted in Information, Part P | Leave a comment

NICEIC Video’s

If you work as an electrical installer or contractor then checkout the link below, lots of useful video’s.


Posted in Information, Web Links | Leave a comment

We Are On Facebook

We are on Facebook, head on over and give us a like to keep up to date with the latest electrical news :-



Posted in Uncategorized | Leave a comment

How do I convert Watts to Amps ?

Watts and amps are both measurements that involve the consumption of electricity, and they measure two different things. A watt is a measurement of power conversion, whereas amps measure the amount of electricity passing a point in a given amount of time. They can be converted, but only if you also know the voltage.

1 – Determine the voltage. You can do the math if you know either watts or amps, but you need the voltage to do it. North American wall outlets operate at 110 volts, whereas those in Europe vary from 210 to 240.

2 – Use a calculator, or a pen and paper if you do not have one.

3 – Convert watts to amps using this equation: amps = watts divided by volts. An example is that a typical 60 watt light bulb on the standard 110 U.S. voltage operates at 0.54 amps (60/110 = amps). The same bulb on European voltage is .025 amps (60/240 = amps).

4 – Convert amps to watts by reversing the equation: amps multiplied by volts = watts. A device operating on 3 amps at 110 volts consumes 330 watts (3 x 110 = watts).

Posted in Conversion, Information | Leave a comment